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Abstract—The ability to assess risk in complex systems is one
of the fundamental challenges facing the aerospace industry
in general, and NASA in particular. First, such an ability al-
lows for quantifiable trade-offs during the design stage of a
mission. Second, it allows the monitoring of the health of
the system while in operation. Because many of the diffi-
culties in complex systems arise from the interactions among
the subsystems, system health monitoring cannot solely fo-
cus on the health of those subsystems. Instead system level
signatures that encapsulate the complex system interactions
are needed. In this work, we present the Entropy-Scale (ES)
and Entropy-Resolution (ER) system-level signatures, that
are both computationally tractable and encapsulate many of
the salient characteristics of a system. These signatures are
based on the change of entropy as a system is observed across
different resolutions and scales.

We demonstrate the use of the ES and ER signatures on ar-
tificial data streams and simple dynamical systems and show
that they allow the unambiguous clustering of many types of
systems, and therefore are good indicators of system health.
We then show how these signatures can be applied to graph-
ical data as well as data strings by using a simple “graph-
walking” method. This methods extracts a data stream from a
graphical system representation (e.g., fault tree, software call
graph) that conserves the properties of the graph. Finally we
apply these signatures to analysis of software packages, and
show that they provide significantly better correlation with
risk markers than many standard metrics. These results indi-
cate that proper system level signatures, coupled with detailed
component-level analysis will enable the automatic detection
of potentially hazardous subsystem interactions in complex
systems before they lead to system deterioration or failures.
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1. INTRODUCTION

In large complex system composed of many interacting com-
ponents determining the health of the full system is signifi-
cantly more involved than simply assessing the health of all
the subsystems. The unpredicted interactions among those
subsystems are often the leading causes of system deteriora-
tion or outright failure [1]. However, because of the sheer
number of variables involved, accurately modeling those in-
teractions is difficult at best and impossible at worst.

It is therefore crucial to obtain methods that characterize com-
plex engineered systems in a way that will both allow bet-
ter design trade-offs during the design stages and provide de-
tailed health monitoring signals during operation. Though an
accurate measure of system complexity would be a significant
step in that direction, what is of more immediate concern is a
establishing a connection between the salient characteristics
of the system and its inherent risk. In this work we focus on
providing system level signatures that are good markers for
the crucial system behaviors and therefore are good predic-
tors of risk, rather than grapple with a precise definition of
system complexity. Indeed the definition of a broadly appli-
cable complexity measure has proven to be both elusive and
in many cases contentious [11].

A survey on complex system science including a discussion
of the many proposed complexity measures is presented in
[11]. Among such measures, the Kolmogorov (or algorith-
mic) complexity [8] is historically the most studied measure,
while Self-Dissimilarity is one of the more novel and inter-
esting measures [16]. The Kolmogorov complexity, defined
as the minimum number of bits into which a string can be
compressed by a Universal Turing machine without loss of
information, is deeply rooted in mathematical theory. It is
often intuitively defined as length of the code that would gen-
erate the observed data. Though theoretically well founded,
the Kolmogorov complexity is of little use in practice because
it equates randomness with complexity and more importantly,
it cannot be computed efficiently [11]. Self-Dissimilarity on
the other hand is a promising empirical measure of complex-
ity for a broad class of systems including naturally occur-
ring and engineered ones [16]. It is based on the intuitive
notion that complex systems process information differently
at different scales which leads them to exhibit rich and var-
ied behavior when viewed across different scales. It has suc-
cessfully been applied to clustering satellite images and has



been shown to discriminate chaotic and non-chaotic behav-
ior in logistic maps [16]. However, it can be computationally
expensive in some domains and to date, has not been been
used to try to discriminate between healthy and non-healthy
engineered systems. Other recent complexity measures in-
clude information or entropy based methods [6], [13], heuris-
tic based methods [2], and methods based on stochastic com-
plexity [12].

The system-level signatures we present in this work encap-
sulate the interactions among the system components, but re-
main computationally tractable for statistical analysis. In par-
ticular, this method is aimed at both numerical and graphical
data: Numerical data in this context is any “raw” data that can
be collected from sensors (e.g., images, streams from teleme-
try, bit strings) as well as “flattened” graphical data. Graphi-
cal data is higher-level representation of a system in the form
of a flowchart or graph (e.g., fault tree, design diagram, soft-
ware call graph, schematics). In general, the use of simple
statistics on either set of data yields little clue on the com-
plexity of the system: Graphical data representations are too
“abstract”, while low-level data is too high dimensional to
provide the required information about overall system health.
Data reduction methods offer a potential solution for the lat-
ter, but because the properties pertinent to system health are
often hidden in secondary system interactions, such methods
do not generally provide good system level signatures.

The proposed system level signatures are based on Shannon
entropy, which intuitively provides a measure of the uncer-
tainty remaining in the system after an observation has been
made [4]. Though a valuable statistical measure, entropy by
itself is a poor predictor of complexity, because it treats ran-
domness and complexity as the same: the system with the
highest entropy is a system that is purely random. How-
ever, such a system is generally not considered to be of “high
complexity”. Furthermore, entropy only focuses on the fre-
quency of patterns, not their ordering. As such a periodic
binary string and a random binary string containing the same
number of ones and zeros have the same entropy. To over-
come these limitations of entropy as a system level signature
we focus on the change of entropy as the system is viewed
across different resolutions and scales. Though the distribu-
tion of ones and zeros may be the same in a random string
and a periodic string, the distribution of two digit strings and
three digit strings may be different. Finally, we extend this
signature to graphical data by performing a walk on the data
that results in numerical data, while retaining the subsystem
interactions of the numerical data. Our results show that the
Entropy-Scale (ES) and Entropy-Resolution (ER) signatures
provide significantly more information about a system’s be-
havior and therefore are good predictors of system health.

In Section 2 we use data networks to provide a motivating
example of the impact of selecting the proper system signa-
tures. We show how the health of the system is obscured by
selecting natural or traditional system signatures. We then

present domain specific alternatives that allow for more suc-
cessful risk assessment. In Section 3 we discuss how to gen-
eralize this concept, and introduce the entropy based system
level signatures. In Section 4 we illustrates how these signa-
tures can be applied to data strings. In Section 5, we apply
these signatures to software packages and show that the sig-
natures are better indicators of system level risk (evaluated as
the number of revisions) than traditional software complexity
metrics. Finally, in Section 6, we highlight the implications of
these results, discuss the limitations of the proposed method
and suggest future research directions.

2. MOTIVATION : SIGNATURE SELECTION

This section shows the impact of selecting system level sig-
natures in predicting the robustness of a set of simple data
network models. The networks include include ring, small-
world, hub, tree and grid topologies (the last three are shown
in Figure 1). In this motivating example, the robustness of the
network is determined as the ability of the network to with-
stand having nodes removed and still have all of the nodes
of the network be reachable from any other node. In this in-
stance, the risk associated with these networks is that com-
munication between nodes is interrupted after a random set
of nodes are removed. Furthermore, these networks are clas-
sified as “high risk” or “low risk” based on this metric. The
question in this case is to determine good system level sig-
natures that will readily distinguish between the two types of
risk for various network topologies and sizes.

Figure 1. Different network topologies. Different system
structures may look similar if inappropriate features or not
enough features are used. A broad feature signature can alle-
viate this problem.

The two most obvious features to monitor in a network are
the number of nodes and edges in the network. These two
features form a “signature” as shown in Figure 2(a). Intu-
itively, one might expect certain network types as defined by
this signature (e.g., networks with many nodes and relatively
few edges) to have higher risk than other networks. How-
ever, Figure 2(a) shows that in the absence of additional in-
formation (e.g., network topology), this signature has little
value in predicting network risk. This signature fails to pro-
vide discriminating features because it does not capture sum-
mary information about the topology of the network. Without
a signature that captures how the nodes interact, the low risk
(green circle) vs. high risk (red square) classification is nearly
impossible.

Let us now investigate a new signature, one based on the con-
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(b) Distribution of High Risk/Low Risk networks with respect to aver-
age connectivity and average number of hops.

Figure 2. Discriminating capability of two different sets of signatures. Red squares are high risk networks and green circles
are low risk networks.

nectivity of the network (average number of neighbors for
each node) and the network traversal count (average number
of hops from one node to another). This signature has the
exact same dimensionality as the edge/node count signature
(e.g., both require two numbers) and can be visualized in an
identical matter (e.g, 2-D graph). Figure 2(b) provides this
signature for the same set of networks as in Figure 2(a). Note
that in this instance, the classification of high risk and low risk
networks is far easier in many parts of the signature space.

In this case, we used our knowledge of network topology to
derive a signature (connectivity vs. average hop chart) that
provided discriminating features for assessing system risk
(network breakdown). In the following sections we general-
ize this idea by providing signatures that are good risk dis-
criminators in large systems where the interactions among
subsystems are sufficiently complex to preclude hand pick-
ing specific variables as indicators of system behavior.

In Figure 3 we present alternative signatures that assume no
prior knowledge about the domain, such as network structure,
importance of connectivity or traversal distance. Note, we
provide these signatures here as a motivating example based
on the networks discussed above. The details on how these
signatures are obtained is discussed in Section 3. The signa-
ture in Figure 3(b) separates the networks into three clusters:
low risk, high risk and undetermined. This is similar to the
clustering in Figure 2(b) which also had an “undetermined”
class of networks in the top left corner. Figure 3(a) separates
the networks even more successfully into low and high risk
classes. Also note that Entropy alone (e.g., scale 1 in ES sig-
nature) does not provide discriminating power, highlighting
the need to view the full signature.

3. SYSTEM LEVEL SIGNATURES

In this section we introduce two system level signatures based
on Shannon Entropy. We first briefly present the concept en-
tropy, then discuss the impact of changing the resolution and
scale with which we study that system on entropy. For a given
data stringS of alphabet sizeA, where the probability of
observing each alphabet element in that string isp(si), the
Shannon entropy is defined as:

H(S) =
A∑
i=1

p(si)log2 p(si) (1)

Intuitively, the Shannon entropy provides the amount of un-
certainty removed by observing the string. As such it has
three main drawbacks as a system level signature related to
system complexity. The first of these is that entropy is a
measure of disorder, not complexity and therefore is maxi-
mal for purely random patterns. It provides the amount of
order or disorder in the system, which may or may not be
correlated with the complexity of the system. Indeed, many
intuitive notions of complexity hinge on having subtle inter-
actions among highly unpredictable components.

A second issue with using entropy as a complexity measure
is that because it is based on the distribution of samples, it
disregards the order in which the samples are observed. This
property has the effect or removing potentially highly relevant
information. Consider the following three binary strings:s1,
a string of alternating zeros and ones;s2, a random binary
string wherep(0) = p(1) = .5; ands3, a string of double
ones alternating with double zeros. Because each string has
the same distribution of ones and zeros, each string has the
same Shannon entropy. Clearly fundamental properties of the
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(a) Entropy-Scale Signature (resolutionr = 3).
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(b) Entropy-Resolution Signature (at scale 1).

Figure 3. Entropy based signatures for risk assessment in different network types. Solid (red) lines are high risk networks;
dashed (blue) lines are low risk networks.

system have not been captured by the entropy, and represent-
ing the systems that generated those strings simply by their
entropy will not be of much use.

The third issue with using Entropy as complexity measure is
that entropy ignores the sample labels. For binary strings this
is not a major problem, but for strings with large alphabets, or
for strings with real numbers, this can be crucial: the concept
of proximity is lost. Because of these deficiencies, Shannon
entropy unsuitable to be used directly as a complexity mea-
sure. In this work we focus on signatures that directly deal
with the first two issues. In Section 6, we discuss an exten-
sion that also addresses the third issue.

The signatures we propose are based on the change in En-
tropy when the string is viewed at different resolutions and
at different scales. In this context, resolution means the size
of the unit elements that constitute the data. We can analyze
an image at a single pixel level, at 2x2 (ornxn) windows,
or we can analyze a book by looking at the letters, words or
sentences. Each of those choices will provide analysis at a
different resolution. Scaling on the other hand, corresponds
to zooming in or out of the data.

Entropy-Resolution Signature

The Entropy-Resolution signature overcomes the first two de-
ficiencies described above. The intuitive idea behind look-
ing at entropic variability is that the change of entropy will
provide insight into the system. A random pattern will have
high entropy, but it will be high regardless of the resolution
at which it is observed. For example, a random string of let-
ters across a page will not appear more or less random when
viewed at a letter resolution, a word resolution or a sentence
resolution. Therefore, the entropy variation across resolution

will be a straight line.

As an example, let us return to the three binary strings again:
The entropy ofs2 will be the maximal entropy at each res-
olution as each pattern is equally likely until the resolution
is high enough to introduce sampling effects. At resolution
r = 2, the entropy ofs1 however will be identical to its
entropy at resolutionr = 1, since only two of the possible
four strings (01 and 10) are observed. At resolutionr = 2,
the entropy ofs3 will also be maximal since all possible two
bit strings will occur with equal frequency. So for resolution
r = 2, we will have:

Hr2
s2 = Hr2

s3 > Hr2
s1 (2)

whereHrj
si is the entropy of theith string at resolutionj. At

resolutionr = 3, s2 ands3 also separate, sinces3 will only
have certain three-bit samples (it will only have 110, 001,
011, 100). For resolutionr = 3, we will have:

Hr3
s2 > Hr3

s3 > Hr3
s1 (3)

The ER signature separates the three strings by providing
different entropy values at different resolutions. Intuitively,
ordered or purely random systems will have simple (linear)
ER signatures whereas more complex systems will exhibit a
richer set of patterns.

Entropy-Scale Signature

The Entropy-Scale signature shares many of the characteris-
tics of the ER signature. Scaling can be viewed as zooming
in to or out of the data. Looking at the entropy across differ-
ent scales will provide high level information as well as finer
details (shape of a table, vs. grain in the wood). If the data
set is well understood, the appropriate scale at which to ana-
lyze it may be obvious. If not, it has to be determined through



the ES signatures. However, even if the appropriate scale is
known, looking at the full scale entropy signature provides a
wealth of information about a system’s health.
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Figure 4. Scaling Symbolic Data: For a scale of five five
data strings are formed by sampling every fifth element of
the original data string using five different offsets from the
beginning of the stream. A histogram is made of each stream,
sorted and then combined to form one aggregated histogram.

For a scaling of sizenwe want to represent a set ofn values in
the data stream with a single value. While scaling an image is
relatively straight-forward1, scaling arbitrary streams of data
is not. Techniques that work for images, such as averaging
pixel values do not work data streams composed of arbitrary
symbols. Even for data sets composed of scalar values, av-
eraging can be tremendously influenced by how the data is
processed. Instead of averaging this paper approaches scal-
ing by looking at the distribution of the symbols as shown in
Figure 4. What this method amounts to is decimating the data
at the rate of the scalen. However, in order to limit the im-
pact of starting points and random fluctuations, the operation
is conductedn times.

For a scaling of sizen, substrings are produced by sampling
everyn symbols in the original data-string.n substring are
produced, each being sampled with a different offset from
the beginning of the string. For example, a scaling ofn = 2
for the data string101010 would produce the substring111
and000. The histogram of each substring is then computed
and sorted using an arbitrary sorting order. Then the sorted
histograms of all of the substrings are added together to form
a single histogram corresponding the the scaled view of the
data. Distribution based measures, such as entropy, can then
be used on the combined histogram to produce a signature
value for the scaling. In the above string of alternating ones
and zeros, we get an entropy of zero at scale 2 since both
substrings are constant.

4. SIGNATURE EXAMPLES ON STRINGS

In this section we show how signatures composed of different
scales and resolutions capture the salient properties of three
sets of binary strings. The first set consists of two simple
repeating patterns. The second set consists of two simple
repeating patterns of ascii characters. The third set consists
of more complex patterns generated from cellular automata.
Finally, we present a mixed string example where we blend
different strings together. All the strings are ten thousand bits

1Even for images there are many scaling techniques such as box, triangle,
b-spline and bicubic scaling. Each method has its own tradeoffs.

long. In all of the plots with varying scales the resolution is
set to eight. In all of the plots with varying resolutions the
scale is set to one.

Simple Binary Strings

In this example two different binary strings are used. The
first string is simply alternating ones and zeros: “10101010...”
The second string is composed of sets of six consecutive ones
separated by either one, two or three zeros (with an average
of two zeros): “11111101111110001111110011111101...”
Also from these patterns, two more patterns were generated
by adding 10% noise from a uniform distribution of ones and
zeros.

Figure 5 shows the ER and ES signatures of these strings
formed from different scales. The signature for the first string
is as simple as the string itself, as it alternates at every scale.
When noise is added to the strings the signature looks very
similar except that the noise causes it to have more entropy
on average. The signature for the second string shows the
more unpredictable nature of the string. The signature reflects
that there are many patterns in this string. However, there is
still a dominant pattern represented in the pattern as spikes
in the signature at scales that are multiples of eight. This
corresponds to the eight-bit pattern composed of six ones fol-
lowed by an average of two zeros. When noise is added to
this signature, its average entropy rises too, but the shape of
the signature is still intact.

Eight-bit strings

In this example two sets of strings are generated from the
eight bit representations of ascii characters. The first string
is composed of a repeated string of the ascii character ‘A’:
“AAAAA...” The first string is composed of a repeated string
of the ascii characters ‘AZ’ : “AZAZAZ...” Figure 6 shows
the ES and ER signatures. Note the ES signature for the first
pattern spiking at multiples of eight, which corresponds to the
eight-bit length of the pattern. This signature also shows that
for the second string there are spikes at multiples of eight cor-
responding to the length of the ascii characters. It also shows
an even bigger spike at multiples at sixteen that is not present
in the first string. This spike corresponds to the pattern be-
ing composed of two eight bit characters. Also note that like
the previous strings, the addition of random noise increases
the entropy uniformly, but does not significantly change the
shape of the signature.

Cellular Automata

In this section we apply the ES and ER signatures to eight bit
Cellular Automata (CA) [5], [15]. CAs are discrete dynami-
cal systems that can be represented in simple 2D plots where
the axis are space and time. The evolution of the system is
prescribed by a set of rules, and at each step, each cell deter-
mines its next value as a function of the current states of other
cells. Figure 7 shows six eight-bit CAs (evolving vertically).
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Figure 5. Signatures of simple strings: The first pattern is a set of alternating 1s and 0s. The second pattern consists of sets
of six 1s separated by a varying number of 0s. Adding random noise the strings raises their entropy, but the shape of their
signature is preserved.
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Figure 6. Signatures of Character Patterns: The patterns are composed of binary representation of 8-bit ascii characters. The
first pattern is a set of the repeating character ‘A.’ The second pattern consists of repeating the string ‘AZ.’ Adding random
noise the strings raises their entropy, but the shape of their signature is preserved.

45 30 54 50 18 6

Figure 7. Six Sample eight-bit Cellular Automata. The Cellular Automata evolve vertically, with each line representing a
successive time step.
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Figure 8. Signatures of cellular automata: These figures show the signatures for six of the possible 256 8-bit cellular automata.
The image of the cellular automata is shown in the middle of this figure. Note that cellular automata that look similar (such as
45 and 30, or 54 and 50) have similar looking signatures. The signatures also reflect the complexity of the automata, and in the
case of cellular automata 18, the signature reflects its fractal property.

Figure 8 shows the signatures for these six CAs. CAs 45 and
30 are chaotic and have similar high entropy signatures that
are not significantly influenced by scale. CAs 54 and 50 both
have simple repeating patterns and both have similar signa-
tures that oscillate heavily with scale. CA 18 has a fractal
pattern, which is captured by the spikes in its signature oc-
curring at powers of two. CA 6 has a very simple pattern,
which is captured in a low entropy signature.

Mixed Strings

In many cases the data we are analyzing may be composed of
data from many different sources that we do not have access
to directly. A desirable characteristic of the mixed string sig-
nature is that it retains the salient characteristics of its com-
ponent strings. This property is especially important when
we need to detect a change in the properties of an individual
source. Figure 9(a) shows how the ES signature preserves
the properties of the separate data sources. In this figure,
a string is created by interleaving the bits from two other
strings. Every odd bit comes from the first string and every
even bit comes from the second string. Note the signature of
the mixed string shares the structure of its constituent strings,
rather than appearing as a random string. Furthermore, when
a string with a pattern is interleaved with a random string, the
full signature is translated up, but still contains the pertinent
information of the initial string. Note that half the bits in this
string are random, yet the structure of the initial string is still
preserved.

5. SOFTWARE SIGNATURES

In the previous sections we showed how complexity signa-
tures can be of value by illustrating their use on a set of ar-

tificially generated data strings. In this section, we examine
empirically how those signatures work on real data obtained
from software packages. This analysis is performed by first
converting a call-graph representation of the software into a
data string using a specialized traversal. Then, the entropy
based signatures are used to assess the complexity of the re-
sulting data string. The complexity measure is then used to
predict the number of revisions that were made to each source
code file. In this instance the number of revision counts is
used as a risk marker, since it is directly correlated with cost
overruns, delivery delays, and ultimately, failures.

Converting Graphs into Data Strings

The first step in our approach to analyzing the software call-
graph is to create a representation of the call-graph in the form
of a data string while conserving its structure. We do this by
making traversals through the call-graph and concatenating
each node visited to the end of the data string. The goal in our
traversal is to approximate the calls that would be made by a
running program. This traversal is done through a modified
random walk where each node that is visited is marked. If a
loop is detected (a node is visited which is marked), then the
walk direction is reversed simulating a return from a function
call. An example traversal is shown in Figure 10.

Performance on Software Data

We tested how well a complexity analysis of a software’s call
graph can be used to predict the number of revisions that were
made to each code file in a software package. We used five
java-based software packages from the open source commu-
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Figure 9. Signatures of mixed strings: The string “String 2 + String 1” is composed of interleaving the bits of String 1 and
String 2. Note that the signature of this interleaved string contains properties of both Strings 1 and 2. When String 2 becomes
interleaved with a random string, its signature becomes much different.

A

B

(A calls B)

Figure 10. Traversal heuristic: A random walk is performed
on the graph until a node is revisited. Then the walk is re-
versed to simulate the returning from a function call.

nity2. These packages contained a total of 300,000 lines of
code. The software was composed of java code files, with
typically one class per file. Most classes contain methods
(functions), which can be called from other methods within
the class or from methods outside of the class. For each soft-
ware package, a call-graph was generated between all of the
methods as shown in Figure 11.

For each class, a data string was generated by taking a series
of traversals where each traversal started at a random method

2The packages were “Pmd,” “Megamek,” “Jedit,” “Tyrant,” and “Pdfbox.”
They came from sourceforge.com and were chosen from active software
packages that contained revision counts in their CVS tree.

class 1

method 1

method 2

method 3

class 2

method 1

method 2

class 3

method 1

method 2

method 3

class 4

method 1

method 2

method 3
method 4

Figure 11. Call Graph Between Methods. Each class can
contain several methods. The directed call graph is defined
by the calls between methods.

within the class. All the traversals were then concatenated to-
gether to form the data string representation of the call-graph.
Figure 12 shows the signatures for the eight largest methods,
where each method is labeled by the number of revisions it
received. A close look at Figure 12(b) shows two different
levels of clusters. For small resolutions (r = 1 andr = 2),
there are four clusters. The first has the methods with 4 and
6 revisions, the second has the methods with 22, 24 and 27
revisions, the third has methods with 34 and 47 revisions and
the last has the method with 104 revisions. At resolutions of
r = 3 and higher, the two middle clusters merge together.
The discriminating capability of this method is remarkable
considering it is based on generating data strings from the
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(b) Entropy-Scale signature (resolutionr = 8).

Figure 12. System signatures for software packages: Each curve refers to a stream generated from a single class file. The key
shows the number of revisions for the class file. Strings with higher entropy tend to have higher revision counts.

software call graph and then obtaining the entropy of that
string at different resolutions. No information about the graph
is used or needed to cluster the methods. Figure 12(a) shows
the scale dependence of each method at resolutionr = 8.
Though the method requiring 104 and 6 revisions are singled
out, the rest of the methods share similar signatures.
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Figure 13. Effectiveness of entropy-based signatures: Each
data point of a given color represents a class. The entropy
based measure is a significantly more accurate predictor of
the number of revisions made to a class than McCabe’s Com-
plexity.

In order to compare these results to currently used methods
for predicting revision counts, we have isolated a cross sec-
tion of Figure 12(b). Unfortunately, the overall quality of the
data was poor as many of the classes did not have their re-
vision counts properly recorded. Therefore we exclude large
classes that had almost zero revision counts, because the re-
visions were never entered into the system.
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Figure 14. Correlation of system signatures to revision
counts. The entropy based measure is significantly more cor-
related to revision counts for the classes with the ten-most
revisions.

Figure 13 shows the performance of the entropy measure at
r = 3, s = 1 vs. McCabe’s Cyclometric Complexity, a
widely used software complexity metric [9]. McCabe’s Com-
plexity measures the number of times that the flow is bro-
ken in a software file, including flow breaks coming from
method calls and “if” statements. The entropy based signa-
ture is nearly linearly correlated with revision counts whereas
the McCabe’s measure shows little correlation with the re-
vision counts. Note, the difference in predictive ability be-
comes more pronounced when the revision counts are higher,
a regime where the quality of the data is more reliable.

In Figure 14, we extend this result to the full five software
packages and include a simple line count as a third indicator
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Figure 15. Full 3D Entropy-Resolution-Scale signatures. The third signature is the superposition of the first two strings, and
both systems’ characteristics (slope for random and peak/valley for regular string are present.

of software complexity. In this figure we show, using Pear-
son’s Correlation, the predictive power of each of the mea-
sures for the ten classes of each package that had the highest
revision counts. The results show that the entropy-based mea-
sure performed significantly better than the other metrics on
two of the packages, slightly better on a third package and
about equally well on the remaining two packages.

6. DISCUSSION ANDFUTURE WORK

In this work we have shown that system level signatures based
on the changes in entropy when a system is viewed at dif-
ferent resolution and scales are effective in capturing salient
properties of the system. These signatures have both general
system markers to distinguish between different types of be-
havior in a system and detailed system markers that are sen-
sitive to perturbations in the system. The latter in particular is
crucial in using such signatures as aids in health monitoring.

In both artificial data strings and simple discrete systems,
these signatures provided good discriminating capabilities.
Furthermore, when applied to a generic set of software pack-
ages, they proved more effective in predicting failures than
standard “size” measurements for software, including Mc-
Cabe’s Cyclometric Complexity. This is an encouraging re-
sult as these signatures were not tuned to the domain. We
anticipate stronger results when we apply these signatures to
richer (and cleaner) data.

In the experiments reported in this article, we have used the
Entropy-Scale and Entropy-Resolution signatures as indepen-
dent signatures. Our current work focuses on binding the two
together to provide 3D system signatures. Figure 15 shows
a sample of such signatures on a simple repeating pattern, a
random pattern and a pattern where the two have been com-
bined. The 3D signature of the mixed signal clearly shows the
dominant structure of both component systems in the form of
the repeating valleys and the overall slope. We are also in-
vestigating more expressive visualization methods, including
color-intensity 2D charts instead of 3D charts. We are also ex-
tending this work into telemetry data composed of real num-

bers and are addressing the third deficiency of Entropy as a
complexity measure described in Section 3 by generalizing
Entropy to account for proximity in the data. Finally, we are
looking into applying these signature to real aerospace sys-
tems (e.g., shuttle engines) to demonstrate their health moni-
toring properties in engineered complex systems.
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